• DocumentCode
    507339
  • Title

    MFISW: A New Method for Mining Frequent Itemsets in Time and Transaction Sensitive Sliding Window

  • Author

    Feng, Jiayin ; Yan, Zhongwen ; Kang, Yan ; Wang, Jing ; An, Lihong

  • Author_Institution
    Coll. of Sci. & Technol., Comput. Sci. Dept., Hebei Normal Univ., Qinhuangdao, China
  • Volume
    5
  • fYear
    2009
  • fDate
    14-16 Aug. 2009
  • Firstpage
    270
  • Lastpage
    274
  • Abstract
    It is challenge to design an efficient summary data structure and an online approximation algorithms to limit the memory usage and the scan times in streaming data mining. In this paper, we present a CST(compressed suffix tree) structure to store arriving itemsets in the SC model. Then, our MFISW (mining frequent itemsets in sliding window) algorithm with the top-down traversal strategy can only scan data once to mine frequent itemsets in sliding window. Next, MFISW algorithm can update the mining result incrementally. Experiment shows that MFISW is efficient and scalable.
  • Keywords
    data mining; tree data structures; compressed suffix tree; mining frequent itemsets; online approximation algorithms; streaming data mining; summary data structure; time sensitive sliding window; transaction sensitive sliding window; Algorithm design and analysis; Approximation algorithms; Computer science; Data mining; Data structures; Educational institutions; Fading; Fuzzy systems; Itemsets; Windows; Data Stream; Frequent itemsets; data mining;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Fuzzy Systems and Knowledge Discovery, 2009. FSKD '09. Sixth International Conference on
  • Conference_Location
    Tianjin
  • Print_ISBN
    978-0-7695-3735-1
  • Type

    conf

  • DOI
    10.1109/FSKD.2009.844
  • Filename
    5360616