Title :
Enhancing Particle Swarm Optimization with Gradient Information
Author :
Zahara, Erwie ; Kao, Yi-Tung ; Su, Jhong-Ren
Author_Institution :
Dept. of Marketing & Logistic Manage., St. John´´s Univ., Tamsui, Taiwan
Abstract :
Heuristic optimization provides a robust and efficient approach for solving complex real-world problems. This paper proposes an enhanced particle swarm optimization with gradient information (GPSO). Newton´s method is embedded in the velocity update equation to improve the effect of cognition influence. The performance of GPSO is tested using six benchmark multimodal functions and the numerical results comparison with other optimization methods demonstrate the effectiveness and efficiency of the proposed GPSO method.
Keywords :
Newton method; gradient methods; particle swarm optimisation; Newton´s method; benchmark multimodal functions; cognition influence; gradient information; heuristic optimization; particle swarm optimization; velocity update equation; Cognition; Conference management; Engineering management; Equations; Marketing management; Newton method; Optimization methods; Particle swarm optimization; Robustness; Testing; Newton´s method; multimodal function; particle swarm optimization;
Conference_Titel :
Natural Computation, 2009. ICNC '09. Fifth International Conference on
Conference_Location :
Tianjin
Print_ISBN :
978-0-7695-3736-8
DOI :
10.1109/ICNC.2009.711