• DocumentCode
    508205
  • Title

    Local Kernel Mapping for Object Recognition

  • Author

    Zhang, Baochang ; Zheng, Hong ; Wang, Zhongli

  • Author_Institution
    Sch. of Autom. Sci. & Electr. Eng., Beihang Univ., Beijing, China
  • Volume
    2
  • fYear
    2009
  • fDate
    14-16 Aug. 2009
  • Firstpage
    573
  • Lastpage
    576
  • Abstract
    This paper proposes a new method, named Local Kernel Mapping (LKM), for object recognition. LKM is proposed to capture the nonlinear local relationship by using the kernel function. Different from traditional kernel methods for feature extraction, the proposed method does not need to reserve the training samples. To testify the effectiveness of LKM, we apply it on Local Binary Pattern (LBP), and the experiment results on palmprint show that LKM can improve the performance of the LBP method.
  • Keywords
    feature extraction; object recognition; feature extraction; kernel function; local binary pattern; local kernel mapping; nonlinear local relationship; object recognition; Data mining; Detectors; Feature extraction; Image edge detection; Kernel; Lighting; Object recognition; Pattern recognition; Principal component analysis; Spatial databases;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation, 2009. ICNC '09. Fifth International Conference on
  • Conference_Location
    Tianjin
  • Print_ISBN
    978-0-7695-3736-8
  • Type

    conf

  • DOI
    10.1109/ICNC.2009.419
  • Filename
    5365975