DocumentCode :
510059
Title :
Preserving FDs in K-Anonymization by K-MSDs and Association Generalization
Author :
Song, Jinling ; Huang, Liming ; He, Qi ; Gao, Yan ; Liu, Xin ; Li, Yuxiang
Author_Institution :
HeBei Normal Univ. of Sci. & Technol., Qinhuangdao, China
Volume :
1
fYear :
2009
fDate :
11-14 Dec. 2009
Firstpage :
565
Lastpage :
569
Abstract :
Although k-anonymity can guarantee the security of privacy, it may violate data dependencies, such as FDs (functional dependency) in k-anonymization. We define a new data dependency named k-multiset dependency (K-MSD), and show that a K-MSD dataset satisfies k-anonymity constraint too. So, it is possible to implement k-anonymization through constructing K-MSDs over original dataset. For the FDs over the original dataset, we preserve them using association generalization (AG) while constructing K-MSDs. Then, we propose a k-anonymization algorithm: K-MSD-AG to preserve FDs.
Keywords :
data privacy; security of data; K-MSD; association generalization; data dependencies; functional dependency; k-anonymization; k-multiset dependency; privacy security; Computational intelligence; Data engineering; Data privacy; Data security; Educational institutions; Helium; Information security; Information technology; Marine technology; Oceans; FDs; association generalization; k-anonymity; k-anonymization; k-multiset dependency;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Security, 2009. CIS '09. International Conference on
Conference_Location :
Beijing
Print_ISBN :
978-1-4244-5411-2
Type :
conf
DOI :
10.1109/CIS.2009.142
Filename :
5375898
Link To Document :
بازگشت