• DocumentCode
    51254
  • Title

    Visual Tracking in Background Subtracted Image Sequences via Multi-Bernoulli Filtering

  • Author

    Hoseinnezhad, Reza ; Vo, Ba-Ngu ; Vo, Ba-Tuong

  • Author_Institution
    Sch. of Aeropspace, RMIT Univ., Melbourne, VIC, Australia
  • Volume
    61
  • Issue
    2
  • fYear
    2013
  • fDate
    Jan.15, 2013
  • Firstpage
    392
  • Lastpage
    397
  • Abstract
    This correspondence presents a novel method for simultaneous tracking of multiple non-stationary targets in video. Our method operates directly on the video data and does not require any detection. We propose a multi-target likelihood function for the background-subtracted grey-scale image data, which admits multi-target conjugate priors. This allows the multi-target posterior to be efficiently propagated forward using the multi-Bernoulli filter. Our method does not need any training pattern or target templates and makes no prior assumptions about object types or object appearance. Case studies from the CAVIAR dataset show that our method can automatically track multiple targets and quickly finds targets entering or leaving the scene.
  • Keywords
    image colour analysis; image sequences; target tracking; video signal processing; CAVIAR dataset; background subtracted image sequences; background-subtracted grey-scale image data; multiBernoulli filtering; multiple nonstationary targets; multitarget conjugate priors; multitarget likelihood function; multitarget posterior; simultaneous tracking; visual tracking; Bandwidth; Estimation; Image color analysis; Kernel; Signal processing algorithms; Target tracking; Visualization; Finite set statistics; multi-Bernoulli filter; multi-object filtering; random finite set; visual tracking;
  • fLanguage
    English
  • Journal_Title
    Signal Processing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1053-587X
  • Type

    jour

  • DOI
    10.1109/TSP.2012.2222389
  • Filename
    6320704