Title :
Robust semiparametric amplitude estimation of sinusoidal signals: The multi-sensor case
Author :
Muma, Michael ; Hammes, Ulrich ; Zoubir, Abdelhak M.
Author_Institution :
Signal Process. Group, Tech. Univ. Darmstadt, Darmstadt, Germany
Abstract :
The problem of robust estimation of the complex amplitudes of sinusoidal signals using multiple sensors, in an unknown heavy-tailed, spatially and temporally i.i.d. noise environement is considered. A semiparametric approach for this case is presented, where non-parametric estimation of the noise density is succeeded by maximum likelihood estimation incorporating the estimated density. The suggested approach adapts to the sensor measurements using a compact, and conceptually simple non-parametric transformation density estimation. Simulation results are provided, which illustrate the improvement of the presented approach over classical robust or non-robust estimation procedures, e.g. Huber´s minimax estimator or the least-squares estimator.
Keywords :
amplitude estimation; maximum likelihood estimation; sensor fusion; Huber minimax estimator; least-squares estimator; maximum likelihood estimation; multisensor; noise density; nonparametric transformation density estimation; robust semiparametric amplitude estimation; sensor measurements; sinusoidal signals; Amplitude estimation; Bandwidth; Frequency estimation; Gaussian noise; Maximum likelihood estimation; Noise robustness; Parameter estimation; Parametric statistics; Signal processing; Working environment noise;
Conference_Titel :
Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), 2009 3rd IEEE International Workshop on
Conference_Location :
Aruba, Dutch Antilles
Print_ISBN :
978-1-4244-5179-1
Electronic_ISBN :
978-1-4244-5180-7
DOI :
10.1109/CAMSAP.2009.5413242