DocumentCode :
51338
Title :
Can We Define a Best Estimator in Simple One-Dimensional Cases? [Lecture Notes]
Author :
Lantz, Eric ; Vernotte, Francois
Author_Institution :
Univ. of Franche-Comte, Besancon, France
Volume :
30
Issue :
6
fYear :
2013
fDate :
Nov. 2013
Firstpage :
151
Lastpage :
156
Abstract :
What is the best estimator for assessing a parameter of a probability distribution from a small number of measurements? Is the same answer valid for a location parameter like the mean as for a scale parameter like the variance? It is sometimes argued that it is better to use a biased estimator with low dispersion than an unbiased estimator with a higher dispersion. In which cases is this assertion correct? To answer these questions, we will compare, on a simple example, the determination of a location parameter and a scale parameter with three "optimal" estimators: the minimum-variance unbiased estimator, the minimum square error estimator, and the a posteriori mean.
Keywords :
estimation theory; mean square error methods; normal distribution; parameter estimation; statistical analysis; a posteriori mean; dispersion; location parameter; minimum square error estimator; minimum-variance unbiased estimator; one-dimensional cases; optimal estimators; probability distribution; scale parameter; Density measurement; Frequency estimation; Gaussian distribution; Parameter estimation; Probability density function; Random variables; Time-frequency analysis;
fLanguage :
English
Journal_Title :
Signal Processing Magazine, IEEE
Publisher :
ieee
ISSN :
1053-5888
Type :
jour
DOI :
10.1109/MSP.2013.2276532
Filename :
6632986
Link To Document :
بازگشت