Title :
Material Parameter Identification and Optimal Technological Parameter Prediction for Intelligent Control of Rectangular Box Drawing
Author :
Su Chunjian ; Guo Sumin
Author_Institution :
Shandong Univ. of Sci. & Technol., Qingdao, China
Abstract :
In the four basic factors on the intellectualization of sheet metal forming, the real-time identification of the material performance parameter and the prediction of the optimum technological parameter are the two most complicated technical keys. The accuracy of identification and prediction will have direct effect on the success of the intelligent control. Taking the intelligent control of rectangular box as an object of study, feed forward neural network model based on LM algorithm has been established to realize material properties and friction coefficient for deep drawing of rectangular box. Satisfied accuracy of convergence has been achieved by means of real-time monitoring and measure to identify the material performance parameter and predict the optimum technological parameter.
Keywords :
deep drawing; feedforward neural nets; forming processes; friction; intelligent control; parameter estimation; sheet metal processing; LM algorithm; Levenberg-Marquardt optimization algorithm; deep drawing; feed forward neural network; friction coefficient; intelligent control; material parameter identification; optimal technological parameter prediction; optimum technological parameter prediction; real time identification; real time monitoring; rectangular box drawing; sheet metal forming; Condition monitoring; Feedforward neural networks; Feeds; Friction; Inorganic materials; Intelligent control; Material properties; Neural networks; Parameter estimation; Sheet materials; intelligent control; neural network; real-time identification; rectangular box drawing;
Conference_Titel :
Measuring Technology and Mechatronics Automation (ICMTMA), 2010 International Conference on
Conference_Location :
Changsha City
Print_ISBN :
978-1-4244-5001-5
Electronic_ISBN :
978-1-4244-5739-7
DOI :
10.1109/ICMTMA.2010.309