DocumentCode
519213
Title
Clustering human behaviors with dynamic time warping and hidden Markov models for a video surveillance system
Author
Ouivirach, Kan ; Dailey, Matthew N.
Author_Institution
Comput. Sci. & Inf. Manage., Asian Inst. of Technol., Pathumthani, Thailand
fYear
2010
fDate
19-21 May 2010
Firstpage
884
Lastpage
888
Abstract
We propose and experimentally evaluate a new method for clustering human behaviors that is suitable for bootstrapping an anomaly detection module for intelligent video surveillance systems. The method uses dynamic time warping, agglomerative hierarchical clustering, and hidden Markov models to provide an initial partitioning of a set of observation sequences then automatically identifies where to cut off the hierarchical clustering dendrogram. We show that the method is extremely effective, providing 100% accuracy in separating anomalous from typical behaviors on real-world testbed video surveillance data.
Keywords
hidden Markov models; pattern clustering; video surveillance; agglomerative hierarchical clustering; anomaly detection; dynamic time warping; hidden Markov model; hierarchical clustering dendrogram; human behaviors; intelligent video surveillance systems; Bayesian methods; Computer science; Hidden Markov models; Humans; Intelligent systems; Layout; Monitoring; Security; Testing; Video surveillance;
fLanguage
English
Publisher
ieee
Conference_Titel
Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on
Conference_Location
Chaing Mai
Print_ISBN
978-1-4244-5606-2
Electronic_ISBN
978-1-4244-5607-9
Type
conf
Filename
5491580
Link To Document