DocumentCode :
519213
Title :
Clustering human behaviors with dynamic time warping and hidden Markov models for a video surveillance system
Author :
Ouivirach, Kan ; Dailey, Matthew N.
Author_Institution :
Comput. Sci. & Inf. Manage., Asian Inst. of Technol., Pathumthani, Thailand
fYear :
2010
fDate :
19-21 May 2010
Firstpage :
884
Lastpage :
888
Abstract :
We propose and experimentally evaluate a new method for clustering human behaviors that is suitable for bootstrapping an anomaly detection module for intelligent video surveillance systems. The method uses dynamic time warping, agglomerative hierarchical clustering, and hidden Markov models to provide an initial partitioning of a set of observation sequences then automatically identifies where to cut off the hierarchical clustering dendrogram. We show that the method is extremely effective, providing 100% accuracy in separating anomalous from typical behaviors on real-world testbed video surveillance data.
Keywords :
hidden Markov models; pattern clustering; video surveillance; agglomerative hierarchical clustering; anomaly detection; dynamic time warping; hidden Markov model; hierarchical clustering dendrogram; human behaviors; intelligent video surveillance systems; Bayesian methods; Computer science; Hidden Markov models; Humans; Intelligent systems; Layout; Monitoring; Security; Testing; Video surveillance;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on
Conference_Location :
Chaing Mai
Print_ISBN :
978-1-4244-5606-2
Electronic_ISBN :
978-1-4244-5607-9
Type :
conf
Filename :
5491580
Link To Document :
بازگشت