• DocumentCode
    519213
  • Title

    Clustering human behaviors with dynamic time warping and hidden Markov models for a video surveillance system

  • Author

    Ouivirach, Kan ; Dailey, Matthew N.

  • Author_Institution
    Comput. Sci. & Inf. Manage., Asian Inst. of Technol., Pathumthani, Thailand
  • fYear
    2010
  • fDate
    19-21 May 2010
  • Firstpage
    884
  • Lastpage
    888
  • Abstract
    We propose and experimentally evaluate a new method for clustering human behaviors that is suitable for bootstrapping an anomaly detection module for intelligent video surveillance systems. The method uses dynamic time warping, agglomerative hierarchical clustering, and hidden Markov models to provide an initial partitioning of a set of observation sequences then automatically identifies where to cut off the hierarchical clustering dendrogram. We show that the method is extremely effective, providing 100% accuracy in separating anomalous from typical behaviors on real-world testbed video surveillance data.
  • Keywords
    hidden Markov models; pattern clustering; video surveillance; agglomerative hierarchical clustering; anomaly detection; dynamic time warping; hidden Markov model; hierarchical clustering dendrogram; human behaviors; intelligent video surveillance systems; Bayesian methods; Computer science; Hidden Markov models; Humans; Intelligent systems; Layout; Monitoring; Security; Testing; Video surveillance;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Electrical Engineering/Electronics Computer Telecommunications and Information Technology (ECTI-CON), 2010 International Conference on
  • Conference_Location
    Chaing Mai
  • Print_ISBN
    978-1-4244-5606-2
  • Electronic_ISBN
    978-1-4244-5607-9
  • Type

    conf

  • Filename
    5491580