• DocumentCode
    522994
  • Title

    Bipartite Graph Partition Problems into Cycles

  • Author

    Lijuan, Chen

  • Author_Institution
    Coll. of Math & Phys., Nanjing Univ. of Inf. Sci. & Technol., Nanjing, China
  • Volume
    1
  • fYear
    2010
  • fDate
    4-6 June 2010
  • Firstpage
    185
  • Lastpage
    187
  • Abstract
    In this article, we consider the following problem: Given a bipartite graph G and a positive integer k, when does G contain exactly k vertex-disjoint cycles? We will prove that if G = (V1, V2, E) is a bipartite graph with |V1| = |V2| = n ≥ 2k + 1 and δ1.1 (G) ≥ 2[n/2] + 2, then G contains exactly k vertex-disjoint cycles.
  • Keywords
    graph theory; bipartite graph partition problems; positive integer; vertex-disjoint cycles; Bipartite graph; Educational institutions; Information science; Physics computing; Postal services; bipartite graph; cycle; partition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information and Computing (ICIC), 2010 Third International Conference on
  • Conference_Location
    Wuxi, Jiang Su
  • Print_ISBN
    978-1-4244-7081-5
  • Electronic_ISBN
    978-1-4244-7082-2
  • Type

    conf

  • DOI
    10.1109/ICIC.2010.53
  • Filename
    5514203