• DocumentCode
    523742
  • Title

    Analysis of Feature Extraction Criterion Function Maximum in Nonlinear Multi-layer Feedforward Neural Networks for Pattern Recognition

  • Author

    Junhong, Cao ; Zhuobin, Wei ; Tao, Huang ; Xianwei, Xiong

  • Author_Institution
    Dept. of Logistics Command & Eng., Naval Univ. of Eng., Tianjin, China
  • Volume
    1
  • fYear
    2010
  • fDate
    11-12 May 2010
  • Firstpage
    655
  • Lastpage
    658
  • Abstract
    This paper addresses feature extraction criterion function of multi-layer feed forward neural networks with linear output units and nonlinear hidden units. From the minimum mean square error function of the network output, the paper uses the nature of matrix trace and singular value decomposition, deduces the formula for calculating the nonlinear criterion function maximum, then explains the significance of this formula. Finally, simulation examples prove the correctness of the analytic style.
  • Keywords
    feature extraction; feedforward neural nets; least mean squares methods; matrix algebra; multilayer perceptrons; pattern recognition; singular value decomposition; feature extraction criterion function maximum analysis; matrix trace; minimum mean square error function; multilayer perceptrons; nonlinear criterion function maximum; nonlinear multilayer feedforward neural networks; pattern recognition; singular value decomposition; Feature extraction; Feedforward neural networks; Feeds; Matrix decomposition; Mean square error methods; Multi-layer neural network; Neural networks; Pattern analysis; Pattern recognition; Singular value decomposition; criterion function maximum; feature extraction; multi-layer feedforward neural network; pattern recognition;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Intelligent Computation Technology and Automation (ICICTA), 2010 International Conference on
  • Conference_Location
    Changsha
  • Print_ISBN
    978-1-4244-7279-6
  • Electronic_ISBN
    978-1-4244-7280-2
  • Type

    conf

  • DOI
    10.1109/ICICTA.2010.193
  • Filename
    5522992