Title :
Cross-contamination aware design methodology for pin-constrained digital microfluidic biochips
Author :
Lin, Cliff Chiung-Yu ; Chang, Yao-Wen
Abstract :
Digital microfluidic biochips have emerged as a popular alternative for laboratory experiments. Pin-count reduction and cross-contamination avoidance are key design considerations for practical applications with different droplets being transported and manipulated on highly integrated biochips. We present in this paper the first design automation flow that considers the cross-contamination problems on pin-constrained biochips. We explore the factors that make the problems harder on pin-constrained biochips. To cope with these cross contaminations, we propose (1) early crossing minimization algorithms during placement, and (2) systematic wash droplet scheduling and routing that require only one extra control pin and zero assay completion time overhead for practical bioassays. Experimental results show the effectiveness and scalability of our algorithms for practical bioassays.
Keywords :
bioMEMS; biological techniques; digital integrated circuits; electronic design automation; lab-on-a-chip; scheduling; bioassays; cross-contamination aware design methodology; design automation flow; early crossing minimization algorithms; pin-constrained digital microfluidic biochips; systematic wash droplet routing; systematic wash droplet scheduling; zero assay completion time overhead; Automatic control; Contamination; Control systems; Design automation; Design methodology; Laboratories; Microfluidics; Minimization methods; Routing; Scheduling algorithm; Microfludics; biochip; cross-contamination; design methodology;
Conference_Titel :
Design Automation Conference (DAC), 2010 47th ACM/IEEE
Conference_Location :
Anaheim, CA
Print_ISBN :
978-1-4244-6677-1