• DocumentCode
    52686
  • Title

    m -ary Balanced Codes With Parallel Decoding

  • Author

    Pelusi, Danilo ; Elmougy, Samir ; Tallini, Luca G. ; Bose, Bella

  • Author_Institution
    Fac. di Sci. della Comun., Univ. degli Studi di Teramo, Teramo, Italy
  • Volume
    61
  • Issue
    6
  • fYear
    2015
  • fDate
    Jun-15
  • Firstpage
    3251
  • Lastpage
    3264
  • Abstract
    An m-ary block code, m = 2, 3, 4,..., of length n ϵ IN is called balanced if, and only if, every codeword is balanced; that is, the real sum of the codeword components, or weight, is equal to ⌊(m - 1)n/2⌋. This paper presents efficient encoding schemes to m-ary balanced codes with parallel (hence, fast) decoding. In fact, the decoding time complexity is O(1) digit operations. These schemes are a generalization to the m-ary alphabet of Knuth´s complementation method with parallel decoding. Let (nw)m indicate the number of m-ary words w of length n and weight w ϵ(0,1, ... , (m - 1)n}. For any m ϵ IN, m ≥ 2, a simple implementation of the method is given which uses r ϵ IN check digits to balance k ≤ {(⌊(m-1)r/2⌋)m - (m mod 2 + [(m - 1)k] mod 2}}/(m - 1) information digits with an encoding time complexity of O(mk logm k) digit operations. A refined implementation of the parallel decoding method is also given with r check digits and k ≤ (mr -1)/(m -1) information digits, where the encoding time complexity is O(k√logm k). Thus, the proposed codes are less redundant than the m-ary balanced codes with parallel decoding found in the literature and yet maintain the same complexity.
  • Keywords
    computational complexity; decoding; encoding; Knuth complementation method; check digit operation; codeword component; encoding scheme; information digit operation; m-ary alphabet; m-ary balanced code; m-ary block code; parallel decoding method; time complexity; Decoding; Encoding; Frequency modulation; Indexes; Redundancy; Time complexity; $m$ -ary alphabet; Balanced codes; Knuth’s complementation method; Knuth???s complementation method; m-ary alphabet; optical and magnetic recording; parallel decoding scheme; unidirectional error detection;
  • fLanguage
    English
  • Journal_Title
    Information Theory, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    0018-9448
  • Type

    jour

  • DOI
    10.1109/TIT.2015.2429139
  • Filename
    7101243