Title :
Convergence rate of quantum algorithm for multivariate approximation
Author :
Long, Jingfan ; Zhang, Sheng ; Ye, Peixin
Author_Institution :
Beijing Inf. Sci. & Technol. Univ., Beijing, China
Abstract :
We estimate the convergence rate of quantum algorithm for approximation from some smooth functions in the Lq([0, 1]d) norm for 1 ≤ q ≤ ∞. It turns out that for the Sobolev class B(Wpr([0, 1]d)) (r ∈ ℕd), when p <; q, the quantum algorithms can bring speedup over classical deterministic and randomized algorithms.
Keywords :
convergence of numerical methods; deterministic algorithms; function approximation; quantum computing; convergence rate; deterministic algorithm; multivariate approximation; quantum algorithm; randomized algorithm; smooth function; sobolev class; Approximation algorithms; Complexity theory; Convergence; Function approximation; Neodymium; Quantum computing;
Conference_Titel :
Natural Computation (ICNC), 2010 Sixth International Conference on
Conference_Location :
Yantai, Shandong
Print_ISBN :
978-1-4244-5958-2
DOI :
10.1109/ICNC.2010.5582913