• DocumentCode
    527708
  • Title

    Recurrent neural network control for nonlinear friction with sliding mode and friction estimator

  • Author

    Han, Seong Ik ; Lee, Kwon Soon ; Yeo, Dae Yeon ; Koo, Kyung Wan ; Kim, Sae Han ; Ahn, Woo Young

  • Author_Institution
    Dept. of Electr. Eng., Dong-A Univ., Busan, South Korea
  • Volume
    3
  • fYear
    2010
  • fDate
    10-12 Aug. 2010
  • Firstpage
    1387
  • Lastpage
    1392
  • Abstract
    In this paper, we have developed an friction compensation scheme for the rotary servo system using sliding mode and recurrent neural networks with friction estimator. An adaptive parameter updating rules of the recurrent neural network (RNN) and friction estimator have been developed to mimic the ideal sliding mode control and compensate the nonlinear friction via the Lyapunov stability theory.
  • Keywords
    Lyapunov methods; friction; neurocontrollers; nonlinear control systems; recurrent neural nets; servomechanisms; variable structure systems; Lyapunov stability; friction compensation; friction estimator; nonlinear friction; recurrent neural network control; rotary servo system; sliding mode; Approximation methods; Artificial neural networks; Friction; Recurrent neural networks; Servomotors; Uncertainty; Dynamic friction; LuGre friction mode; Recurrent neural network; Servo system; Sliding mode control; component;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Natural Computation (ICNC), 2010 Sixth International Conference on
  • Conference_Location
    Yantai, Shandong
  • Print_ISBN
    978-1-4244-5958-2
  • Type

    conf

  • DOI
    10.1109/ICNC.2010.5583904
  • Filename
    5583904