DocumentCode :
53133
Title :
Improvement of the Preconditioned MRTR Method With Eisenstat´s Technique in Real Symmetric Sparse Matrices
Author :
Tsuburaya, Tomonori ; Okamoto, Yuji ; Fujiwara, Koji ; Sato, Seiki
Author_Institution :
Dept. of Electr. & Electron. Syst. Eng., Utsunomiya Univ., Tochigi, Japan
Volume :
49
Issue :
5
fYear :
2013
fDate :
May-13
Firstpage :
1641
Lastpage :
1644
Abstract :
The Incomplete Cholesky Conjugate Gradient (ICCG) method is widely used to solve indefinite algebraic equations obtained using an edge-based finite element method. However, when a linear solver based on the minimum residual is used, there is a possibility of reducing the elapsed time for a linear system. This paper shows the performance of the preconditioned minimized residual method based on the three-term recurrence formula of the CG-type (MRTR) method by comparing the MRTR method with the ICCG method for real symmetric sparse matrices. Furthermore, we intend to reduce computational costs by using Eisenstat´s technique, and achieve more speed-up by applying a preconditioned residual to the convergence criterion.
Keywords :
conjugate gradient methods; finite element analysis; matrix algebra; CG-type method; Eisenstat technique; ICCG method; edge-based finite element method; elapsed time; incomplete cholesky conjugate gradient method; indefinite algebraic equations; preconditioned MRTR method; preconditioned minimized residual method; real symmetric sparse matrices; three-term recurrence formula; Convergence criterion; Eisenstat´s technique; MRTR method; incomplete Cholesky conjugate gradient (ICCG) method; split preconditioning;
fLanguage :
English
Journal_Title :
Magnetics, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9464
Type :
jour
DOI :
10.1109/TMAG.2013.2240283
Filename :
6514778
Link To Document :
بازگشت