DocumentCode :
534716
Title :
Feature extraction and classification of EEG for imagery movement based on mu/beta rhythms
Author :
Huang, Sijuan ; Wu, Xiaoming
Author_Institution :
Sch. of Biosci. & Bioeng., South China Univ. of Technol., Guangzhou, China
Volume :
2
fYear :
2010
fDate :
16-18 Oct. 2010
Firstpage :
891
Lastpage :
894
Abstract :
Classification of electroencephalogram(EEG) is a crucial issue for EEG-based brain computer interface(BCI) system. The paper presents a method for EEG classification, where property of event-related desynchronization/synchronization(ERD/ERS) of mu/beta rhythms, The mu/beta rhythms are obtained after filtering and wavelet packet transform. The energy feature is formed by the squared amplitude of the preprocessed data, and then be classified by the function “classifiy” attached by matlab7.0.This is an extension of our previous work on the use of ERD/ERS of mu/beta rhythms for EEG classification. Numerical experiments with imagery movement data set in 2003 BCI competition, confirm the useful behavior of the property for EEG classification, and well verify the property in turn.
Keywords :
brain-computer interfaces; electroencephalography; feature extraction; medical signal processing; BCI; EEG classification; ERD; ERS; brain computer interface; electroencephalogram; event-related desynchronization; event-related synchronization; feature extraction; filtering; imagery movement; mu/beta rhythms; wavelet packet transform; Accuracy; Electroencephalography; Feature extraction; Rhythm; Wavelet packets; electroencephalogram(EEG); energy; event-related desynchronization/synchronization(ERD/ERS); mu/beta rhythms; wavelet packet transform;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Biomedical Engineering and Informatics (BMEI), 2010 3rd International Conference on
Conference_Location :
Yantai
Print_ISBN :
978-1-4244-6495-1
Type :
conf
DOI :
10.1109/BMEI.2010.5639888
Filename :
5639888
Link To Document :
بازگشت