DocumentCode :
534905
Title :
A burst change detection algorithm for data streams
Author :
Xian-Fei, Yang ; Zhang Jian-pei ; Yang Jing ; Xiang, Li
Author_Institution :
Coll. of Comput. Sci. & Technol., Harbin Eng. Univ., Harbin, China
Volume :
1
fYear :
2010
fDate :
13-14 Sept. 2010
Firstpage :
353
Lastpage :
356
Abstract :
Burst Change of probability distribution at any moment is an important characteristic in data streams. When it has happened, data mining algorithm must adapt itself to new probability distribution. So how to detect burst change in data streams is an important part of data stream mining. In this paper, we proposed an algorithm BCDADS to detect it by using hoeffding theorem and independent identical distribution central limit theorem. Theory and experiment indicated this algorithm can effectively detect burst change in data streams.
Keywords :
data mining; statistical distributions; BCDADS; burst change detection algorithm; data stream mining; hoeffding theorem; independent identical distribution central limit theorem; probability distribution; change; data stream; hoeffding theorem;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Computational Intelligence and Natural Computing Proceedings (CINC), 2010 Second International Conference on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-7705-0
Type :
conf
DOI :
10.1109/CINC.2010.5643822
Filename :
5643822
Link To Document :
بازگشت