DocumentCode :
53498
Title :
Theory-Guided Data Science for Climate Change
Author :
Faghmous, James H. ; Banerjee, Adrish ; Shekhar, Shashi ; Steinbach, Michael ; Kumar, Vipin ; Ganguly, Auroop R. ; Samatova, Nagiza
Author_Institution :
Dept. of Comput. Sci. & Eng., Univ. of Minnesota, Minneapolis, MN, USA
Volume :
47
Issue :
11
fYear :
2014
fDate :
Nov. 2014
Firstpage :
74
Lastpage :
78
Abstract :
To adequately address climate change, we need novel data-science methods that account for the spatiotemporal and physical nature of climate phenomena. Only then will we be able to move from statistical analysis to scientific insights.
Keywords :
climate mitigation; data handling; scientific information systems; statistical analysis; climate change; climate phenomena; data-science methods; physical nature; scientific insights; spatiotemporal nature; statistical analysis; theory-guided data science; Meteorology; Ocean temperature; Spatiotemporal phenomena; Temperature distribution; big data; climate change; data analysis; data mining; discovery analytics; scientific computing; theory-guided data science;
fLanguage :
English
Journal_Title :
Computer
Publisher :
ieee
ISSN :
0018-9162
Type :
jour
DOI :
10.1109/MC.2014.335
Filename :
6965271
Link To Document :
بازگشت