DocumentCode :
53700
Title :
Particle Based Smoothed Marginal MAP Estimation for General State Space Models
Author :
Saha, Saikat ; Mandal, Pranab Kumar ; Bagchi, Arunabha ; Boers, Yvo ; Driessen, Johannes N.
Author_Institution :
Dept. of Electr. Eng., Linkoping Univ., Linkoping, Sweden
Volume :
61
Issue :
2
fYear :
2013
fDate :
Jan.15, 2013
Firstpage :
264
Lastpage :
273
Abstract :
We consider the smoothing problem for a general state space system using sequential Monte Carlo (SMC) methods. The marginal smoother is assumed to be available in the form of weighted random particles from the SMC output. New algorithms are developed to extract the smoothed marginal maximum a posteriori (MAP) estimate of the state from the existing marginal particle smoother. Our method does not need any kernel fitting to obtain the posterior density from the particle smoother. The proposed estimator is then successfully applied to find the unknown initial state of a dynamical system and to address the issue of parameter estimation problem in state space models.
Keywords :
Monte Carlo methods; maximum likelihood estimation; particle filtering (numerical methods); smoothing methods; state-space methods; MAP estimation; SMC; dynamical system; general state space model; marginal particle smoother; maximum a posteriori; parameter estimation problem; sequential Monte Carlo method; smoothing problem; weighted random particle; Approximation methods; Electronic mail; Estimation; Global Positioning System; Kernel; Monte Carlo methods; Smoothing methods; Maximum a posteriori; particle smoother; sequential monte carlo; unknown initial conditions;
fLanguage :
English
Journal_Title :
Signal Processing, IEEE Transactions on
Publisher :
ieee
ISSN :
1053-587X
Type :
jour
DOI :
10.1109/TSP.2012.2223691
Filename :
6327692
Link To Document :
بازگشت