DocumentCode :
538840
Title :
Wavelet Neural Network Based on Modified Particle Swarm Optimization and Its Application in Fault Diagnosis
Author :
Ying, Liu ; Jie, Liu ; Hongxia, Pan
Author_Institution :
Key Lab. of High Speed Cutting & Precision Machining, Tianjin Univ. of Technol. & Educ., Tianjin, China
Volume :
1
fYear :
2010
fDate :
16-17 Dec. 2010
Firstpage :
59
Lastpage :
62
Abstract :
A compound model PSO with stochastic inertia weight is put forward and used to optimize the parameters of wavelet neural network. The trained wavelet neural-network is applied to choosing tested position of gearbox. It is an available approach to solve the problems on extracting fault characteristic values and choosing appropriate tested positions in fault diagnosis.
Keywords :
fault diagnosis; neural nets; particle swarm optimisation; wavelet transforms; PSO; fault characteristic; fault diagnosis application; particle swarm optimization; stochastic inertia weight; wavelet neural network; Artificial neural networks; Fault diagnosis; Gears; Particle swarm optimization; Sensors; Teeth; Training; PSO; fault diagnosis; neural-network; wavelet;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Systems (GCIS), 2010 Second WRI Global Congress on
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-9247-3
Type :
conf
DOI :
10.1109/GCIS.2010.260
Filename :
5708713
Link To Document :
بازگشت