DocumentCode :
539110
Title :
Bounding linearization errors with sets of densities in approximate Kalman filtering
Author :
Noack, B. ; Klumpp, V. ; Petkov, N. ; Hanebeck, U.D.
Author_Institution :
Intell. Sensor-Actuator-Syst. Lab. (ISAS), Karlsruhe Inst. of Technol. (KIT), Karlsruhe, Germany
fYear :
2010
fDate :
26-29 July 2010
Firstpage :
1
Lastpage :
8
Abstract :
Applying the Kalman filtering scheme to linearized system dynamics and observation models does in general not yield optimal state estimates. More precisely, inconsistent state estimates and covariance matrices are caused by neglected linearization errors. This paper introduces a concept for systematically predicting and updating bounds for the linearization errors within the Kalman filtering framework. To achieve this, an uncertain quantity is not characterized by a single probability density anymore, but rather by a set of densities and accordingly, the linear estimation framework is generalized in order to process sets of probability densities. By means of this generalization, the Kalman filter may then not only be applied to stochastic quantities, but also to unknown but bounded quantities. In order to improve the reliability of Kalman filtering results, the last-mentioned quantities are utilized to bound the typically neglected nonlinear parts of a linearized mapping.
Keywords :
Kalman filters; approximation theory; covariance matrices; probability; state estimation; approximate Kalman filtering; covariance matrices; linear estimation framework; linearization errors; probability density; state estimation; Approximation methods; Bayesian methods; Covariance matrix; Ellipsoids; Kalman filters; State estimation; Stochastic processes; Bayesian state estimation; Imprecise probabilities; credal sets; linearization errors; set-theoretic state estimation; sets of densities;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2010 13th Conference on
Conference_Location :
Edinburgh
Print_ISBN :
978-0-9824438-1-1
Type :
conf
DOI :
10.1109/ICIF.2010.5711909
Filename :
5711909
Link To Document :
بازگشت