DocumentCode :
539191
Title :
Hybrid grid multiple-model estimation with application to maneuvering target tracking
Author :
Linfeng Xu ; Li, X. Rong
Author_Institution :
Sch. of Electron. & Inf. Eng., Xi´an Jiaotong Univ., Xi´an, China
fYear :
2010
fDate :
26-29 July 2010
Firstpage :
1
Lastpage :
7
Abstract :
This paper considers the problem of state estimation for a hybrid system with Markovian switching parameters in a continuous space. We propose a hybrid grid multiple model (HGMM) estimator whose model set is a combination of a fixed coarse grid and an adaptive fine grid. We also present two modelset design methods by moment matching, and apply them to practical HGMM algorithms. Simulation results show their cost-effectiveness for state estimation in maneuvering target tracking.
Keywords :
Markov processes; state estimation; target tracking; Markovian switching parameters; adaptive fine grid; fixed coarse grid; hybrid grid multiple-model estimation; maneuvering target tracking application; moment matching; state estimation; Acceleration; Adaptation model; Design methodology; Estimation; Mathematical model; Silicon; Target tracking; Multiple model; maneuvering target tracking; model-set design;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2010 13th Conference on
Conference_Location :
Edinburgh
Print_ISBN :
978-0-9824438-1-1
Type :
conf
DOI :
10.1109/ICIF.2010.5712020
Filename :
5712020
Link To Document :
بازگشت