• DocumentCode
    539342
  • Title

    A hierarchical cluster based preprocessing methodology for Web Usage Mining

  • Author

    Hussain, Tasawar ; Asghar, Sohail ; Fong, Simon

  • Author_Institution
    Fac. of Eng. & Appl. Sci., Muhammad Ali Jinnah Univ. (MAJU), Islamabad, Pakistan
  • fYear
    2010
  • fDate
    Nov. 30 2010-Dec. 2 2010
  • Firstpage
    472
  • Lastpage
    477
  • Abstract
    In Web Usage Mining (WUM), web session clustering plays a key role to classify web visitors on the basis of user click history and similarity measure. Swarm based web session clustering helps in many ways to manage the web resources effectively such as web personalization, schema modification, website modification and web server performance. In this paper, we propose a framework for web session clustering at preprocessing level of web usage mining. The framework will cover the data preprocessing steps to prepare the web log data and convert the categorical web log data into numerical data. A session vector is obtained, so that appropriate similarity and swarm optimization could be applied to cluster the web log data. The hierarchical cluster based approach will enhance the existing web session techniques for more structured information about the user sessions.
  • Keywords
    Internet; Web sites; data mining; particle swarm optimisation; pattern clustering; Web personalization; Web session clustering; Web usage mining; categorical web log data; data preprocessing; hierarchical cluster; swarm optimization; Cleaning; Clustering algorithms; Data mining; Euclidean distance; Filtering algorithms; IP networks; Particle swarm optimization; Hierarchical Clusters and Sessionization; Particle Swarm; Preprocessing; Web Usage Mining;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Advanced Information Management and Service (IMS), 2010 6th International Conference on
  • Conference_Location
    Seoul
  • Print_ISBN
    978-1-4244-8599-4
  • Electronic_ISBN
    978-89-88678-32-9
  • Type

    conf

  • Filename
    5713496