DocumentCode :
539342
Title :
A hierarchical cluster based preprocessing methodology for Web Usage Mining
Author :
Hussain, Tasawar ; Asghar, Sohail ; Fong, Simon
Author_Institution :
Fac. of Eng. & Appl. Sci., Muhammad Ali Jinnah Univ. (MAJU), Islamabad, Pakistan
fYear :
2010
fDate :
Nov. 30 2010-Dec. 2 2010
Firstpage :
472
Lastpage :
477
Abstract :
In Web Usage Mining (WUM), web session clustering plays a key role to classify web visitors on the basis of user click history and similarity measure. Swarm based web session clustering helps in many ways to manage the web resources effectively such as web personalization, schema modification, website modification and web server performance. In this paper, we propose a framework for web session clustering at preprocessing level of web usage mining. The framework will cover the data preprocessing steps to prepare the web log data and convert the categorical web log data into numerical data. A session vector is obtained, so that appropriate similarity and swarm optimization could be applied to cluster the web log data. The hierarchical cluster based approach will enhance the existing web session techniques for more structured information about the user sessions.
Keywords :
Internet; Web sites; data mining; particle swarm optimisation; pattern clustering; Web personalization; Web session clustering; Web usage mining; categorical web log data; data preprocessing; hierarchical cluster; swarm optimization; Cleaning; Clustering algorithms; Data mining; Euclidean distance; Filtering algorithms; IP networks; Particle swarm optimization; Hierarchical Clusters and Sessionization; Particle Swarm; Preprocessing; Web Usage Mining;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Advanced Information Management and Service (IMS), 2010 6th International Conference on
Conference_Location :
Seoul
Print_ISBN :
978-1-4244-8599-4
Electronic_ISBN :
978-89-88678-32-9
Type :
conf
Filename :
5713496
Link To Document :
بازگشت