DocumentCode :
54135
Title :
Robust Estimates of Covariance Matrices in the Large Dimensional Regime
Author :
Couillet, Romain ; Pascal, F. ; Silverstein, Jack W.
Author_Institution :
Dept. of Telecommun., Supelec, Gif-sur-Yvette, France
Volume :
60
Issue :
11
fYear :
2014
fDate :
Nov. 2014
Firstpage :
7269
Lastpage :
7278
Abstract :
This paper studies the limiting behavior of a class of robust population covariance matrix estimators, originally due to Maronna in 1976, in the regime where both the number of available samples and the population size grow large. Using tools from random matrix theory, we prove that, for sample vectors made of independent entries having some moment conditions, the difference between the sample covariance matrix and (a scaled version of) such robust estimator tends to zero in spectral norm, almost surely. This result can be applied to various statistical methods arising from random matrix theory that can be made robust without altering their first order behavior.
Keywords :
covariance matrices; estimation theory; random processes; large dimensional regime; moment conditions; random matrix theory; robust population covariance matrix estimators; spectral norm; statistical methods; Covariance matrices; Eigenvalues and eigenfunctions; Robustness; Sociology; Standards; Vectors; Robust estimation; random matrix theory;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2014.2354045
Filename :
6891244
Link To Document :
بازگشت