DocumentCode :
544713
Title :
Parameter estimation of the sparse data systems using a smoothed-likelihood estimator
Author :
Zhang, Ruomei ; D´Argenio, David Z.
Author_Institution :
Department of Biomedical Engineering, University of Southern California Los Angeles, California 90089-1451
Volume :
6
fYear :
1992
fDate :
Oct. 29 1992-Nov. 1 1992
Firstpage :
2280
Lastpage :
2281
Abstract :
A new approach for the parameter estimation of linear stochastic dynamic models from limited data is described in this paper. The method formally incorporates dynamic process noise as well as output error in defining the estimator, and is motivated by previous work on dynamic model maximum likelihood estimation for sparse data systems. The proposed estimator (smoothed-likelihood estimator) uses a smoothing algorithm to estimate the state of the system and its covariance. Simulation results are presented, evaluating the performance of the smoothed-likelihood estimator, the maximum likelihood estimator, and a regression model estimator.
Keywords :
Kalman filters; Mathematical model;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Engineering in Medicine and Biology Society, 1992 14th Annual International Conference of the IEEE
Conference_Location :
Paris, France
Print_ISBN :
0-7803-0785-2
Electronic_ISBN :
0-7803-0816-6
Type :
conf
DOI :
10.1109/IEMBS.1992.5761462
Filename :
5761462
Link To Document :
بازگشت