Title :
An exact algorithm for the construction of rectilinear steiner minimum trees among complex obstacles
Author :
Huang, Tao ; Young, Evangeline F Y
Author_Institution :
Dept. of Comput. Sci. & Eng., Chinese Univ. of Hong Kong, Shatin, China
Abstract :
In this paper, we present an exact algorithm for the construction of obstacle-avoiding rectilinear Steiner minimum trees (OARSMTs) among complex rectilinear obstacles. This is the first work to propose a geometric approach to optimally solve the OARSMT problem among complex obstacles. The optimal solution is constructed by the concatenation of full Steiner trees (FSTs) among complex obstacles, which are proven to be of simple structures in this paper. The algorithm is able to handle complex obstacles including both convex and concave ones. Benchmarks with hundreds of terminals among a large number of obstacles are solved optimally in a reasonable amount of time.
Keywords :
integrated circuit design; trees (mathematics); OARSMT; complex rectilinear obstacles; full Steiner tree concatenation; obstacle-avoiding rectilinear Steiner minimum tree; Full Steiner Tree; Obstacle-avoiding; Pruning; Rectilinear Steiner Minimum Tree;
Conference_Titel :
Design Automation Conference (DAC), 2011 48th ACM/EDAC/IEEE
Conference_Location :
New York, NY
Print_ISBN :
978-1-4503-0636-2