DocumentCode :
550078
Title :
An auxiliary model based multi-innovation recursive least squares estimation algorithms for MIMO Hammerstein system
Author :
Wang Xiuping ; Chen Jing
Author_Institution :
Wuxi Prof. Coll. of Sci. & Technol., Wuxi, China
fYear :
2011
fDate :
22-24 July 2011
Firstpage :
1442
Lastpage :
1445
Abstract :
An auxiliary model based multi-innovation recursive least squares estimation algorithms is proposed in this paper. The unknown variables in the information vector can be estimated by using the auxiliary model. The proposed recursive least squares algorithm uses not only the current innovation but also the past innovations at each recursion and thus the parameter estimation accuracy can be improved. Finally, the simulation results indicate that the proposed algorithm has good performances.
Keywords :
MIMO systems; innovation management; least squares approximations; parameter estimation; MIMO Hammerstein system; multiinnovation recursive least squares estimation algorithm; parameter estimation accuracy; Adaptation models; Convergence; Least squares approximation; Nonlinear systems; Parameter estimation; Stochastic processes; Technological innovation; Auxiliary model identification; Least squares; Multi-innovation identification; Multi-input multi-output systems; Parameter estimation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2011 30th Chinese
Conference_Location :
Yantai
ISSN :
1934-1768
Print_ISBN :
978-1-4577-0677-6
Electronic_ISBN :
1934-1768
Type :
conf
Filename :
6000415
Link To Document :
بازگشت