DocumentCode :
551111
Title :
Robust linear estimation with second order statistics information uncertainty
Author :
Song Enbin ; Zhu Yunmin ; Zhou Jie ; Shen Xiaojing
Author_Institution :
Coll. of Math., Sichuan Univ., Chengdu, China
fYear :
2011
fDate :
22-24 July 2011
Firstpage :
3401
Lastpage :
3405
Abstract :
In this paper, we develop a robust linear estimation (RLE) in presence of a priori statistical information with uncertainties without a model of a with uncertainty but without assumption of model of parameter under estimation and observation. We assume that a random vector x is observed through a nonlinear (or linear) transformation y = f(x, w), where w is noise. We consider the case that there are some uncertainties in second order statistical information of x and y, i.e., Cx, Cyx and Cy and propose an optimal minimax linear estimator that minimizes worst case mean-squared error (MSE) in the region of uncertainty. The minimax estimator can be formulated as a solution to a semidefinite programming problem (SDP). We consider both the Frobenius norm and spectral norm of the uncertainty constraints, leading to the two corresponding robust linear estimators. Finally, Numerical examples are given which illustrates the effectiveness of the proposed estimators.
Keywords :
estimation theory; mathematical programming; mean square error methods; minimax techniques; parameter estimation; statistics; Frobenius norm; mean-squared error; minimax linear estimator; nonlinear transformation; parameter estimation; parameter observation; robust linear estimation; second order statistics; semidefinite programming; spectral norm; Estimation; Linear matrix inequalities; Mathematical model; Optimization; Programming; Robustness; Uncertainty; Robust estimation; linear estimator; minimax estimation; statistical information uncertainty;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2011 30th Chinese
Conference_Location :
Yantai
ISSN :
1934-1768
Print_ISBN :
978-1-4577-0677-6
Electronic_ISBN :
1934-1768
Type :
conf
Filename :
6001454
Link To Document :
بازگشت