• DocumentCode
    551237
  • Title

    Improved k-means algorithm to quickly locate optimum initial clustering number K

  • Author

    Yang Qing ; Liu Ye ; Zhang Dongxu ; Liu Chang

  • Author_Institution
    Sch. of Inf. Sci. & Eng., Shenyang Ligong Univ., Shenyang, China
  • fYear
    2011
  • fDate
    22-24 July 2011
  • Firstpage
    3319
  • Lastpage
    3322
  • Abstract
    K-means algorithm is often used as a clustering algorithm, but it is vulnerable to the impact of the clustering number k. To eliminate the effect, a method seeking optimum initial clustering number k rapidly is put forward for the k-means algorithm. This method is accomplished by subtractive clustering to determine the optimal initial clustering k. The experiments to the data inside the public database UCI and TE data show that the improved k-means algorithm can eliminate the sensitivity to the initial cluster number k. The clustering speed and precision are improved.
  • Keywords
    data analysis; pattern clustering; TE data; clustering precision; clustering speed; improved k-means algorithm; optimum initial clustering number k location; public database UCI; subtractive clustering; Artificial intelligence; Chemical engineering; Clustering algorithms; Educational institutions; Electronic mail; Indexes; Information science; Cluster; Initial Cluster Number K; K-Means Algorithm; Subtractive Clustering;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Control Conference (CCC), 2011 30th Chinese
  • Conference_Location
    Yantai
  • ISSN
    1934-1768
  • Print_ISBN
    978-1-4577-0677-6
  • Electronic_ISBN
    1934-1768
  • Type

    conf

  • Filename
    6001582