DocumentCode :
554000
Title :
Input compensation learning: Modelling dynamical systems
Author :
Krause, A.F. ; Durr, V. ; Schack, T. ; Cruse, H.
Author_Institution :
Dept. Neurocognition & Action, Univ. of Bielefeld, Bielefeld, Germany
Volume :
1
fYear :
2011
fDate :
26-28 July 2011
Firstpage :
464
Lastpage :
468
Abstract :
A special class of recurrent neural networks, Input Compensation (IC) networks, is applied to model two exemplary dynamical systems, the Van-der-Pol Oscillator and the Figure-Eight pattern. IC-learning results in compact networks that provide insights into the underlying properties of the modelled system.
Keywords :
recurrent neural nets; Input compensation learning; Van-der-Pol oscillator; dynamical system; figure-eight pattern; input compensation network; recurrent neural network; Antennas; Biological system modeling; Mathematical model; Oscillators; Training; Training data;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Natural Computation (ICNC), 2011 Seventh International Conference on
Conference_Location :
Shanghai
ISSN :
2157-9555
Print_ISBN :
978-1-4244-9950-2
Type :
conf
DOI :
10.1109/ICNC.2011.6022106
Filename :
6022106
Link To Document :
بازگشت