DocumentCode :
55682
Title :
Context Tree Estimation in Variable Length Hidden Markov Models
Author :
Dumont, Thierry
Author_Institution :
Dept. de Math., Univ. Paris-Ouest, Nanterre, France
Volume :
60
Issue :
6
fYear :
2014
fDate :
Jun-14
Firstpage :
3196
Lastpage :
3208
Abstract :
We address the issue of context tree estimation in variable length hidden Markov models. We propose an estimator of the context tree of the hidden Markov process, which needs no prior upper bound on the depth of the context tree. We prove that the estimator is strongly consistent. This uses information-theoretic mixture inequalities in the spirit of the literatures of Finesso, and Gassiat and Boucheron. We propose an algorithm to efficiently compute the estimator and provide simulation studies to support our result.
Keywords :
hidden Markov models; information theory; trees (mathematics); context tree estimation; information-theoretic mixture inequalities; variable length hidden Markov models; Context; Density measurement; Estimation; Hidden Markov models; Markov processes; Upper bound; Variable length; consistent estimator; context tree; hidden Markov models; mixture inequalities;
fLanguage :
English
Journal_Title :
Information Theory, IEEE Transactions on
Publisher :
ieee
ISSN :
0018-9448
Type :
jour
DOI :
10.1109/TIT.2014.2314094
Filename :
6780620
Link To Document :
بازگشت