Title :
Incorporating Patch Subspace Model in Mumford–Shah Type Active Contours
Author :
Junyan Wang ; Kap Luk Chan
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
Abstract :
In this paper, we propose a unified energy minimization model for segmentation of non-smooth image structures, e.g., textures, based on Mumford-Shah functional and linear patch model. We consider that image patches of a non-smooth image structure can be modeled by a patch subspace, and image patches of different non-smooth image structures belong to different patch subspaces, which leads to a computational framework for segmentation of non-smooth image structures. Motivated by the Mumford-Shah model, we show that this segmentation framework is equivalent to minimizing a piecewise linear patch reconstruction energy. We also prove that the error of segmentation is bounded by the error of the linear patch reconstruction, meaning that improving the linear patch reconstruction for each region leads to reduction of the segmentation error. In addition, we derive an algorithm for the linear patch reconstruction with proven global optimality and linear rate of convergence. The segmentation in our method is achieved by minimizing a single energy functional without requiring predefined features. Hence, compared with the previous methods that require predefined texture features, our method can be more suitable for handling general textures in unsupervised segmentation. As a by-product, our method also produces a dictionary of optimized orthonormal descriptors for each segmented region. We mainly evaluate our method on the Brodatz textures. The experiments validate our theoretical claims and show the clear superior performance of our methods over other related methods for segmentation of the textures.
Keywords :
convergence; image reconstruction; image segmentation; image texture; Brodatz textures; Mumford-Shah type active contours; by-product; computational framework; convergence; functional model; general textures; global optimality; image patches; image segmentation; linear patch model; nonsmooth image structures; orthonormal descriptors; patch subspace model; piecewise linear patch reconstruction energy; predefined texture features; unified energy minimization model; unsupervised segmentation; Computational modeling; Equations; Image reconstruction; Image restoration; Image segmentation; Mathematical model; Minimization; Mumford–Shah model; Object segmentation; active contour; eigen-patch; error bound of segmentation; piecewise linear patch reconstruction; Algorithms; Image Enhancement; Image Interpretation, Computer-Assisted; Pattern Recognition, Automated; Reproducibility of Results; Sensitivity and Specificity;
Journal_Title :
Image Processing, IEEE Transactions on
DOI :
10.1109/TIP.2013.2274385