DocumentCode :
560715
Title :
Hopf bifurcation analysis and control of the Newton-Leipnik system
Author :
Wang, Xuedi ; Zhang, Wenli
Author_Institution :
Nonlinear Sci. Res. Center, Jiangsu Univ., Zhenjiang, China
Volume :
2
fYear :
2011
fDate :
8-9 Sept. 2011
Firstpage :
377
Lastpage :
380
Abstract :
Newton-Leipnik system is the system that has double strange attractor, and for different parameters its seven equilibrium points are all unstable. In this paper, first of all, we study the characteristics of these seven unstable equilibrium points in order to find out the Hopf bifurcation points, then design a new nonlinear controller based on the bifurcation theory of nonlinear system, and through adding the new nonlinear controller in the original system, moves the Hopf bifurcation point to a new designated position successfully.
Keywords :
bifurcation; control system analysis; nonlinear control systems; Hopf bifurcation analysis; Newton-Leipnik system; bifurcation theory; double strange attractor; equilibrium points; nonlinear controller; Bifurcation; Chaos; Control systems; Eigenvalues and eigenfunctions; Jacobian matrices; Nonlinear dynamical systems; Polynomials; Bifurcation Control; Equilibrium points; Hopf bifurcation; Newton-Leipnik system;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Power Engineering and Automation Conference (PEAM), 2011 IEEE
Conference_Location :
Wuhan
Print_ISBN :
978-1-4244-9691-4
Type :
conf
DOI :
10.1109/PEAM.2011.6134964
Filename :
6134964
Link To Document :
بازگشت