• DocumentCode
    563209
  • Title

    Fast discharge energy storage development for improving X-ray simulators

  • Author

    Sincerny, Peter ; Carboni, Vic ; Childers, Kendall ; Corcoran, Pat ; Hammon, Jud ; Lam, S.K. ; Miller, Richard ; Naff, Tom ; Smith, Ian ; Tucker, Terry ; Ennis, Joel ; Cooper, Robert ; Bell, David ; Davis, Randy

  • Author_Institution
    Titan Pulse Sciences Division, 2700 Merced Street, San Leandro, CA 94577 USA
  • Volume
    1
  • fYear
    2002
  • fDate
    23-28 June 2002
  • Firstpage
    77
  • Lastpage
    80
  • Abstract
    Over the last two years there have been design studies to investigate the impact of improvements in fast energy storage systems on the design of simulator upgrades (Double-EAGLE and Decade Quad) and on larger future simulators (40-MA to 60-MA PRS machine). The fast energy storage systems investigated in these design studies included Fast Marx Generators (FMG with √LC = 200 ns and √LC = 300 ns) and Linear Transformer Drivers (LTD). A design sketch of a compact 20-MA PRS driver and a potential upgrade of Double-EAGLE using FMG technology will be presented. The first concept that will be discussed is a 16-MA driver for PRS (plasma radiation source) loads. This generator would consist of 48 eight-stage FMG units and 13 m diameter and would drive the PRS directly without further pulse compression. The second concept that will be presented is a potential upgrade of an operational simulator, Double-EAGLE. This concept would utilize the FMG to replace the existing slower Marx generator, transfer capacitor and triggered gas switch. The basic building blocks for these future FMG driven machines are a low- inductance Marx switch and a low-inductance capacitor designed to be integrated with the new switch. These components are configured in a low-inductance FMG stage and then stacked in series to form a unit for the voltage required and a number of units in parallel for the required system inductance and stored energy. A review of the FMG component requirements and the status of the FMG component testing in a single-stage FMG configuration will also be presented. A four-stage FMG unit is being built and tested to demonstrate the required stage voltage and inductance. Results of these initial tests will be presented.
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    High-Power Particle Beams (BEAMS), 2002 14th International Conference on
  • Conference_Location
    Albuquerque, NM, USA
  • ISSN
    0094-243X
  • Print_ISBN
    978-0-7354-0107-5
  • Type

    conf

  • Filename
    6219397