DocumentCode :
564812
Title :
An improved parallel minimum spanning tree based clustering algorithm for microarrays data analysis
Author :
Elsayad, Dina ; Khalifa, Amal ; Khalifs, Mohammed Essam ; El-Horbaty, El-Sayed
Author_Institution :
Fac. of Comput. & Inf. Sci., Ain Shams Univ., Cairo, Egypt
fYear :
2012
fDate :
14-16 May 2012
Abstract :
Solving duster identification problem on large amount of data is known to be time consuming. Almost au the state of art clustering techniques focuses on sequential algorithms which suffer from me problem of long runtime. So, parallel algorithms are needed. One of the attempts is a parallel minimum spanning tree (MST)-based clustering technique, called CLUMP, which identifies dense clusters in a noisy background. Although, CLUMP is efficient algorithm for clustering large data set, the MST construction is considered the time consuming phase of the algorithm. This paper presents and improved CLUMP algorithm CLUMP to enhance its speed. The experimental results showed that the proposed algorithm proved to be efficient than the original algorithm CLUMP in terms of complexity and runtime.
Keywords :
data analysis; parallel algorithms; pattern clustering; tree data structures; CLUMP; MST; dense clusters; duster identification problem; improved parallel minimum spanning tree based clustering algorithm; microarrays data analysis; noisy background; parallel algorithms; sequential algorithms; Algorithm design and analysis; Clustering algorithms; Computers; Data engineering; Data structures; Educational institutions; Informatics; Clustering; Microarrays; Minimum spanning tree; parallel;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Informatics and Systems (INFOS), 2012 8th International Conference on
Conference_Location :
Cairo
Print_ISBN :
978-1-4673-0828-1
Type :
conf
Filename :
6236516
Link To Document :
بازگشت