DocumentCode :
565530
Title :
Deep networks for predicting human intent with respect to objects
Author :
Kelley, Richard ; Browne, Katie ; Wigand, Liesl ; Nicolescu, Monica ; Hamilton, Brian ; Nicolescu, Mircea
Author_Institution :
Department of Computer, Science, University of Nevada, Reno, Reno, NV 89557
fYear :
2012
fDate :
5-8 March 2012
Firstpage :
171
Lastpage :
172
Abstract :
Effective human-robot interaction requires systems that can accurately infer and predict human intentions. In this paper, we introduce a system that uses stacked denoising autoencoders to perform intent recognition. We introduce the intent recognition problem, provide an overview of deep architectures in machine learning, and outline the components of our system. We also provide preliminary results for our system´s performance.
Keywords :
Hidden Markov models; Humans; Neural networks; Noise reduction; Robot sensing systems; Training; deep architectures; human-robot interaction; intention modeling;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Human-Robot Interaction (HRI), 2012 7th ACM/IEEE International Conference on
Conference_Location :
Boston, MA, USA
ISSN :
2167-2121
Print_ISBN :
978-1-4503-1063-5
Electronic_ISBN :
2167-2121
Type :
conf
Filename :
6249510
Link To Document :
بازگشت