DocumentCode :
567688
Title :
Bayesian conjugate analysis for multiple phase estimation
Author :
Karunaratne, B. Sachintha ; Morelande, Mark R. ; Moran, Bill
Author_Institution :
Dept. of Electr. & Electron. Eng., Univ. of Melbourne, Melbourne, VIC, Australia
fYear :
2012
fDate :
9-12 July 2012
Firstpage :
1927
Lastpage :
1934
Abstract :
We propose a Bayesian conjugate framework for inferring multiple phases. The framework requires a generalisation of the von Mises distribution for multiple variables. The principal difficulty in the generalisation is the computation of the first order moment and the normalising constant which are essential for Bayesian inference. We propose two approaches, one based on a Bessel function expansion and the other based on a Markov Chain Monte Carlo technique using the Gibbs sampler. We then assess the performance of these two methods against variations in parameters of the generalised von Mises distribution.
Keywords :
Bayes methods; Bessel functions; Markov processes; Monte Carlo methods; phase estimation; signal sampling; Bayesian conjugate analysis; Bayesian inference; Bessel function expansion; Gibbs sampler; Markov chain Monte Carlo technique; first order moment; multiple phase estimation; normalising constant; von Mises distribution; Approximation methods; Bayesian methods; Correlation; Equations; Mathematical model; Q measurement; Vectors; Bayesian analysis; Gibbs; MCMC; conjugate prior; multiple phase estimation; multivariate circular regression; von Mises distribution;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Fusion (FUSION), 2012 15th International Conference on
Conference_Location :
Singapore
Print_ISBN :
978-1-4673-0417-7
Electronic_ISBN :
978-0-9824438-4-2
Type :
conf
Filename :
6290536
Link To Document :
بازگشت