DocumentCode
569428
Title
Edge-pancyclicity and Edge-hamiltonian of Augmented Hypercube
Author
Liu, Hongmei ; Liu, Qing
Author_Institution
Coll. of Sci., China Three Gorges Univ., Yichang, China
fYear
2012
fDate
17-19 Aug. 2012
Firstpage
623
Lastpage
626
Abstract
In this paper, the edge pancyclicity of n-dimensional augmented hypercubes AQn and their edge-Hamiltonian have been investigated. This study demonstrates that each edge lies on all cycles with length from 3 to 2n in AQn and each edge lies on a Hamilton cycle in faulty AQn with the number of fault links no more than 2n-3: The properties obtained in this paper theoretically guarantee excellent edge-fault-tolerant performance of AQn.
Keywords
computer network reliability; fault tolerance; graph theory; edge lies; edge-Hamiltonian; edge-fault-tolerant performance; edge-pancyclicity; fault links; n-dimensional augmented hypercubes; Computer networks; Educational institutions; Fault tolerance; Fault tolerant systems; Graph theory; Hypercubes; Network topology; Augmented hypercube; Edge-pancyclicity; Hamiltonian cycle;
fLanguage
English
Publisher
ieee
Conference_Titel
Computational and Information Sciences (ICCIS), 2012 Fourth International Conference on
Conference_Location
Chongqing
Print_ISBN
978-1-4673-2406-9
Type
conf
DOI
10.1109/ICCIS.2012.135
Filename
6300606
Link To Document