• DocumentCode
    57154
  • Title

    Decentralized Enactment of BPEL Processes

  • Author

    Pantazoglou, Michael ; Pogkas, Ioannis ; Tsalgatidou, Aphrodite

  • Author_Institution
    Dept. of Inf. & Telecommun., Nat. & Kapodistrian Univ. of Athens, Athens, Greece
  • Volume
    7
  • Issue
    2
  • fYear
    2014
  • fDate
    April-June 2014
  • Firstpage
    184
  • Lastpage
    197
  • Abstract
    This article presents BPELcube, a framework comprising a scalable architecture and a set of distributed algorithms, which support the decentralized enactment of BPEL processes. In many application domains, BPEL processes are long-running, involve the exchange of voluminous data with external Web services, and are concurrently accessed by large numbers of users. In such context, centralized BPEL process execution engines pose considerable limitations in terms of scalability and performance. To overcome such problems, a scalable hypercube peer-to-peer topology is employed by BPELcube in order to organize an arbitrary number of nodes, which can then collaborate in the decentralized execution and monitoring of BPEL processes. Contrary to traditional clustering approaches, each node does not fully take charge of executing the whole process; rather, it contributes to the overall process execution by running a subset of the process activities and maintaining a subset of the process variables. Hence, the hypercube-based infrastructure acts as a single execution engine, where workload is evenly distributed among the participating nodes in a fine-grained manner. An experimental evaluation of BPELcube and a comparison with centralized and clustered BPEL engine architectures demonstrate that the decentralized approach yields improved process execution times and throughput.
  • Keywords
    Web Services Business Process Execution Language; business data processing; peer-to-peer computing; BPELcube framework; Web services; business process execution language; centralized BPEL process execution engines; clustered BPEL engine architecture; clustering approach; distributed algorithms; scalable hypercube peer-to-peer topology; voluminous data exchange; Engines; Hypercubes; Peer to peer computing; Scalability; Terrain factors; Topology; Web services; Composite web services; business process management; processes; simulation of business processes;
  • fLanguage
    English
  • Journal_Title
    Services Computing, IEEE Transactions on
  • Publisher
    ieee
  • ISSN
    1939-1374
  • Type

    jour

  • DOI
    10.1109/TSC.2013.6
  • Filename
    6461876