Title :
Multiview Face Detection and Registration Requiring Minimal Manual Intervention
Author :
Anvar, Seyed Mohammad Hassan ; Wei-Yun Yau ; Eam Khwang Teoh
Author_Institution :
Sch. of Electr. & Electron. Eng., Nanyang Technol. Univ., Singapore, Singapore
Abstract :
Most face recognition systems require faces to be detected and localized a priori. In this paper, an approach to simultaneously detect and localize multiple faces having arbitrary views and different scales is proposed. The main contribution of this paper is the introduction of a face constellation, which enables multiview face detection and localization. In contrast to other multiview approaches that require many manually labeled images for training, the proposed face constellation requires only a single reference image of a face containing two manually indicated reference points for initialization. Subsequent training face images from arbitrary views are automatically added to the constellation (registered to the reference image) based on finding the correspondences between distinctive local features. Thus, the key advantage of the proposed scheme is the minimal manual intervention required to train the face constellation. We also propose an approach to identify distinctive correspondence points between pairs of face images in the presence of a large amount of false matches. To detect and localize multiple faces with arbitrary views, we then propose a probabilistic classifier-based formulation to evaluate whether a local feature cluster corresponds to a face. Experimental results conducted on the FERET, CMU, and FDDB datasets show that our proposed approach has better performance compared to the state-of-the-art approaches for detecting faces with arbitrary pose.
Keywords :
face recognition; feature extraction; image classification; image registration; pattern clustering; CMU datasets; FDDB datasets; FERET datasets; distinctive correspondence point identification; distinctive local features; face constellation training; face images; face recognition systems; false matches; local feature cluster evaluation; manually labeled images; minimal manual intervention; multiview face detection; multiview face registration; probabilistic classifier-based formulation; simultaneous multiple face detection and localization; single reference image; Detectors; Face; Face detection; Face recognition; Feature extraction; Manuals; Training; Multiview; face constellation; image registration; simultaneous face detection and localization; Algorithms; Artificial Intelligence; Biometry; Face; Image Enhancement; Image Interpretation, Computer-Assisted; Pattern Recognition, Automated; Photography; User-Computer Interface;
Journal_Title :
Pattern Analysis and Machine Intelligence, IEEE Transactions on
DOI :
10.1109/TPAMI.2013.37