• DocumentCode
    573190
  • Title

    Minimum noiseless description length (MNDL) based regularization parameter selection

  • Author

    Pouryazdian, Saeed ; Beheshti, Soosan ; Krishnan, Sri

  • Author_Institution
    Electr. & Comput. Eng. Dept., Ryerson Univ., Toronto, ON, Canada
  • fYear
    2012
  • fDate
    2-5 July 2012
  • Firstpage
    1341
  • Lastpage
    1346
  • Abstract
    The lp-norm regularized least square technique has been effectively exploited for sparse reconstruction problems. However, the choice of an optimum regularization parameter in the optimization routine still remains a challenge. In this paper we propose a new criterion which is based on MNDL, a new method for optimum subspace selection in data representation, to select the optimum regularization parameter utilizing lp-regularized least-squares. Simulations are done for combined model order selection and parameter estimation for the ubiquitous sinusoids-in-noise model. The results show that the MNDL based regularization parameter selection outperforms the state of the art methods that use MDL for the correct estimation of number of components in the signal.
  • Keywords
    estimation theory; least squares approximations; parameter estimation; signal reconstruction; MNDL based regularization parameter selection; combined model order selection; correct estimation; data representation; lp-norm regularized least square technique; minimum noiseless description length; optimization routine; optimum regularization parameter; optimum subspace selection; parameter estimation; sparse reconstruction problems; ubiquitous sinusoids-in-noise model; Data models; Estimation; Mathematical model; Noise; Noise measurement; Optimization; Vectors;
  • fLanguage
    English
  • Publisher
    ieee
  • Conference_Titel
    Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on
  • Conference_Location
    Montreal, QC
  • Print_ISBN
    978-1-4673-0381-1
  • Electronic_ISBN
    978-1-4673-0380-4
  • Type

    conf

  • DOI
    10.1109/ISSPA.2012.6310502
  • Filename
    6310502