DocumentCode :
573190
Title :
Minimum noiseless description length (MNDL) based regularization parameter selection
Author :
Pouryazdian, Saeed ; Beheshti, Soosan ; Krishnan, Sri
Author_Institution :
Electr. & Comput. Eng. Dept., Ryerson Univ., Toronto, ON, Canada
fYear :
2012
fDate :
2-5 July 2012
Firstpage :
1341
Lastpage :
1346
Abstract :
The lp-norm regularized least square technique has been effectively exploited for sparse reconstruction problems. However, the choice of an optimum regularization parameter in the optimization routine still remains a challenge. In this paper we propose a new criterion which is based on MNDL, a new method for optimum subspace selection in data representation, to select the optimum regularization parameter utilizing lp-regularized least-squares. Simulations are done for combined model order selection and parameter estimation for the ubiquitous sinusoids-in-noise model. The results show that the MNDL based regularization parameter selection outperforms the state of the art methods that use MDL for the correct estimation of number of components in the signal.
Keywords :
estimation theory; least squares approximations; parameter estimation; signal reconstruction; MNDL based regularization parameter selection; combined model order selection; correct estimation; data representation; lp-norm regularized least square technique; minimum noiseless description length; optimization routine; optimum regularization parameter; optimum subspace selection; parameter estimation; sparse reconstruction problems; ubiquitous sinusoids-in-noise model; Data models; Estimation; Mathematical model; Noise; Noise measurement; Optimization; Vectors;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Information Science, Signal Processing and their Applications (ISSPA), 2012 11th International Conference on
Conference_Location :
Montreal, QC
Print_ISBN :
978-1-4673-0381-1
Electronic_ISBN :
978-1-4673-0380-4
Type :
conf
DOI :
10.1109/ISSPA.2012.6310502
Filename :
6310502
Link To Document :
بازگشت