DocumentCode
574196
Title
Bounding procedure for stochastic dynamic programs with application to the perimeter patrol problem
Author
Krishnamoorthy, K. ; Park, Mirang ; Darbha, Swaroop ; Pachter, M. ; Chandler, P.
Author_Institution
Infoscitex Corp., Dayton, OH, USA
fYear
2012
fDate
27-29 June 2012
Firstpage
5874
Lastpage
5880
Abstract
One often encounters the curse of dimensionality in the application of dynamic programming to determine optimal policies for controlled Markov chains. In this paper, we provide a method to construct sub-optimal policies along with a bound for the deviation of such a policy from the optimum via a linear programming approach. The state-space is partitioned and the optimal cost-to-go or value function is approximated by a constant over each partition. By minimizing a positive cost function defined on the partitions, one can construct an approximate value function which also happens to be an upper bound for the optimal value function of the original Markov Decision Process (MDP). As a key result, we show that this approximate value function is independent of the positive cost function (or state dependent weights; as it is referred to, in the literature) and moreover, this is the least upper bound that one can obtain; once the partitions are specified. We apply the linear programming approach to a perimeter surveillance stochastic optimal control problem; whose structure enables efficient computation of the upper bound.
Keywords
Markov processes; autonomous aerial vehicles; dynamic programming; linear programming; military systems; state-space methods; stochastic programming; stochastic systems; suboptimal control; surveillance; MDP; Markov chains; Markov decision process; bounding procedure; linear programming approach; optimal cost-to-go; optimal value function; perimeter patrol problem; perimeter surveillance stochastic optimal control problem; positive cost function minimization; state-space; stochastic dynamic programming; suboptimal policy; Approximation methods; Cost function; Delay; Dynamic programming; Silicon; Upper bound; Vectors;
fLanguage
English
Publisher
ieee
Conference_Titel
American Control Conference (ACC), 2012
Conference_Location
Montreal, QC
ISSN
0743-1619
Print_ISBN
978-1-4577-1095-7
Electronic_ISBN
0743-1619
Type
conf
DOI
10.1109/ACC.2012.6314780
Filename
6314780
Link To Document