DocumentCode :
574491
Title :
Implementation aspects of model predictive control for embedded systems
Author :
Zometa, Pablo ; Kogel, Markus ; Faulwasser, Timm ; Findeisen, Rolf
Author_Institution :
Inst. for Autom. Eng., OvG Univ. Magdeburg, Magdeburg, Germany
fYear :
2012
fDate :
27-29 June 2012
Firstpage :
1205
Lastpage :
1210
Abstract :
We discuss implementation related aspects of model predictive control schemes on embedded platforms. Exemplarily, we focus on fast gradient methods and present results from an implementation on a low-cost microcontroller. We show that input quantization in actuators should be exploited in order to determine a suboptimality level of the online optimization that requires a low number of algorithm iterations and might not significantly degrade the performance of the real system. As a case study we consider a Segway-like robot, modeled by a linear time-invariant system with 8 states and 2 inputs subject to box input constraints. The test system runs with a sampling period of 4 ms and uses a horizons up to 20 steps in a hard real-time system with limited CPU time and memory.
Keywords :
actuators; gradient methods; linear systems; mobile robots; predictive control; Segway-like robot; actuator; embedded system; fast gradient method; linear time-invariant system; low-cost microcontroller; model predictive control; online optimization; Actuators; Gradient methods; Memory management; Quantization; Random access memory; Real-time systems; Upper bound; LEGO NXT; embedded systems; fast gradient method; model predictive control; real-time implementation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
American Control Conference (ACC), 2012
Conference_Location :
Montreal, QC
ISSN :
0743-1619
Print_ISBN :
978-1-4577-1095-7
Electronic_ISBN :
0743-1619
Type :
conf
DOI :
10.1109/ACC.2012.6315076
Filename :
6315076
Link To Document :
بازگشت