Title :
Prolong the stack life of PEM fuel cell system via higher order sliding mode control
Author :
Rakhtala, S.M. ; Ghaderi, R. ; Ranjbar, A.
Author_Institution :
Univ. of Technol., Babol, Iran
Abstract :
Fuel cells are electrochemical generators where produce electrical energy from chemical reactants. It is why these are good candidates to provide clean energy generation. This paper presents a multi-input multi-output (MIMO) dynamic model of polymer electrolyte membrane (PEM) fuel cells. Thereafter a nonlinear controller is designed using the proposed model to prolong the stack life of the PEM fuel cell. A major deviation between hydrogen and oxygen partial pressures can cause severe membrane damage in the fuel cell. During the control designation hydrogen and oxygen inlet flow rates are treated as control variables. Adjustment of hydrogen and oxygen pressures is appropriately defined as control objectives. A second-order sliding mode strategy is applied to the PEM fuel cell system. Details of the design of the control scheme are provided in the current work. A simulation procedure represents dynamic characteristics of the Fuel Cell. It shows the performance of the SOSM approach to PEMFC stack pressure control to provide robustness against uncertainties and disturbances.
Keywords :
proton exchange membrane fuel cells; variable structure systems; MIMO dynamic model; PEM fuel cell system stack life; PEMFC stack pressure control; SOSM; chemical reactants; control designation hydrogen; control objectives; electrical energy; electrochemical generators; higher order sliding mode control; membrane damage; multiinput multioutput dynamic model; oxygen inlet flow rates; oxygen partial pressures; polymer electrolyte membrane fuel cells; second-order sliding mode strategy; Automation; Instruments; Prolong stack life; proton exchange membrane (PEM) fuel cell; second order sliding mode;
Conference_Titel :
Control, Instrumentation and Automation (ICCIA), 2011 2nd International Conference on
Conference_Location :
Shiraz
Print_ISBN :
978-1-4673-1689-7
DOI :
10.1109/ICCIAutom.2011.6356623