Title :
Vehicle Verification Using Features From Curvelet Transform and Generalized Gaussian Distribution Modeling
Author :
Jing-Ming Guo ; Prasetyo, Heri ; Farfoura, Mahmoud E. ; Hua Lee
Author_Institution :
Dept. of Electr. Eng., Nat. Taiwan Univ. of Sci. & Technol., Taipei, Taiwan
Abstract :
This paper presents a new feature descriptor for vehicle verification. The object detection scheme generates the vehicle hypothesis (candidate) that requires subsequent confirmation in the vehicle verification stage with specific feature descriptors. In the procedure of vehicle verification, an image descriptor is generated from the statistical parameter of the curvelet-transformed (CT) subbands. The marginal distribution of CT output is a heavy-tailed bell-shaped function, which can be approximated as Gaussian, Laplace, and generalized Gaussian distribution (GGD) with high accuracy. The maximum likelihood estimation (MLE) produces the distribution parameters of each CT subband for the generation of the image feature descriptor. The classifier then assigns a class label for the vehicle hypothesis based on this descriptor information. As documented in the experimental results, this feature descriptor is effective and outperforms the existing methods in the vehicle verification tasks.
Keywords :
Gaussian distribution; Laplace equations; curvelet transforms; feature extraction; maximum likelihood estimation; object detection; traffic engineering computing; Laplace distribution; curvelet transform; curvelet-transformed subbands; generalized Gaussian distribution modeling; image feature descriptor; maximum likelihood estimation; object detection; specific feature descriptors; vehicle hypothesis; vehicle verification stage; Computed tomography; Feature extraction; Gaussian distribution; Maximum likelihood estimation; Transforms; Vehicle detection; Vehicles; Curvelet transform (CT); maximum likelihood estimation (MLE); supervised classification; vehicle verification;
Journal_Title :
Intelligent Transportation Systems, IEEE Transactions on
DOI :
10.1109/TITS.2014.2386535