DocumentCode :
577808
Title :
Recursive identification of parameters in the minimum variance control
Author :
Yao, Jie ; Wang, Jiang-hong
Author_Institution :
Dept. of the Mech. & Electron., Jingdezhen Ceramic Inst. Jingdezhen, Jingdezhen, China
fYear :
2012
fDate :
6-8 July 2012
Firstpage :
2870
Lastpage :
2877
Abstract :
This paper focus on the parameter recursive identification problems in minimum variance control system from the perspective of identification. Consider the unknown parameter vector of the ARMAX model in the minimum variance closed loop control, we propose multi-innovation recursive least-squares identification method and separable iterative recursive least-squares identification method to identify and estimate the unknown parameters vector in the ARMAX model on line. When excited by the white noise, the two identification methods will give the unbiased estimation about the unknown parameter vector. When excited by the color noise, only the separable iterative recursive least-squares identification method can give the unbiased estimation.
Keywords :
autoregressive moving average processes; closed loop systems; control system synthesis; iterative methods; least mean squares methods; recursive estimation; white noise; ARMAX model; closed loop control; color noise; iterative recursive least-squares identification; minimum variance control; multiinnovation recursive least-squares method; parameter recursive identification problem; parameter vector; white noise; Automation; Ceramics; Estimation; Finite impulse response filter; Intelligent control; Iterative methods; Vectors; minimum variance control; recursive identification;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Intelligent Control and Automation (WCICA), 2012 10th World Congress on
Conference_Location :
Beijing
Print_ISBN :
978-1-4673-1397-1
Type :
conf
DOI :
10.1109/WCICA.2012.6358360
Filename :
6358360
Link To Document :
بازگشت