DocumentCode :
581657
Title :
N-soliton evolution for a nonlinear dispersive long wave system
Author :
Yulan, Ma ; Lingchun, Xiong ; Liling, Chen ; Wei, Wang ; Bangqing, Li
Author_Institution :
Dept. of Math., Beijing Technol. & Bus. Univ., Beijing, China
fYear :
2012
fDate :
25-27 July 2012
Firstpage :
859
Lastpage :
863
Abstract :
Applying the variable transformations and the improved Hirota method, two types of the N-soliton solutions, namely, smooth and singular N-soliton solutions are obtained for a nonlinear dispersive long wave system. The solutions can be expressed explicitly. Furthermore, the evolution processes are investigated for the N-soliton solutions. The result shows that the solitons will fission with time variable.
Keywords :
boundary-value problems; nonlinear systems; solitons; transforms; water waves; wave equations; Hirota method; nonlinear dispersive long wave system; singular N-soliton solutions; time variable; variable transformations; Dispersion; Educational institutions; Equations; Mathematical model; Shape; Solitons; improved Hirota method; nonlinear dispersive long wave system; soliton evolution; soliton fission; variable transformation;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
ISSN :
1934-1768
Print_ISBN :
978-1-4673-2581-3
Type :
conf
Filename :
6390045
Link To Document :
بازگشت