DocumentCode :
581833
Title :
Recursive identification for Wiener-Hammerstein systems with non-Gaussian input
Author :
Xi, Chen ; Hai-Tao, Fang
Author_Institution :
Key Lab. of Syst. & Control, Acad. of Math. & Syst. Sci., Beijing, China
fYear :
2012
fDate :
25-27 July 2012
Firstpage :
1831
Lastpage :
1836
Abstract :
In this paper an identification method is discussed that deals with the Wiener-Hammerstein systems, in which ARX dynamics, non-invertible general static nonlinear function, and non-Gaussian inputs are admitted. By introducing a suitable instrumental variable a new algorithm is presented to recursively estimate the linear subsystems using stochastic approximation algorithm. Based on the kernel method the nonlinear function is estimated recursively. The proposed estimates are proved to be consistent under mild condition. A simulation example is provided justifying this method.
Keywords :
approximation theory; identification; linear systems; nonlinear functions; nonlinear systems; recursive estimation; stochastic processes; ARX dynamics; Wiener-Hammerstein systems; instrumental variable; kernel method; linear subsystems; nonGaussian input; noninvertible general static nonlinear function; recursive estimation; recursive identification method; stochastic approximation algorithm; Equations; Estimation; Heuristic algorithms; Instruments; Kernel; Nonlinear systems; Stochastic processes; Instrumental variable; Non-Gaussian input; Recursive estimate; Wiener-Hammerstein systems;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
ISSN :
1934-1768
Print_ISBN :
978-1-4673-2581-3
Type :
conf
Filename :
6390222
Link To Document :
بازگشت