DocumentCode :
582181
Title :
L-infinity norm minimization in the multiview triangulation
Author :
Min, Yang
Author_Institution :
Coll. of Autom., Nanjing Univ. of Posts & Telecommun., Nanjing, China
fYear :
2012
fDate :
25-27 July 2012
Firstpage :
3723
Lastpage :
3726
Abstract :
The multiview triangulation problem is often solved by minimizing a cost function that combines the reprojection errors in the 2D images. In this paper, we show how to recast multiview triangulation as quasi-convex optimization under the L-infinity norm. It is shown that the L-infinity norm cost function is significantly simpler than the L2 cost. In particular L-infinity norm minimization involves finding the minimum of a cost function with a single global minimum on a convex parameter domain. These problems can be efficiently solved using second-order cone programming. We carried out experiment with real data to show that L-infinity norm minimization provides a more accurate estimate and superior to previous approaches.
Keywords :
computer vision; convex programming; minimisation; 2D images; L-infinity norm cost function; L-infinity norm minimization; convex parameter domain; cost function minimizing reprojection errors; global minimum; multiview triangulation problem; quasiconvex optimization; second-order cone programming; Computer vision; Cost function; Educational institutions; Electronic mail; Geometry; Minimization; Computer vision; L-infinity norm minimization; Multiview triangulation; Second-order cone programming;
fLanguage :
English
Publisher :
ieee
Conference_Titel :
Control Conference (CCC), 2012 31st Chinese
Conference_Location :
Hefei
ISSN :
1934-1768
Print_ISBN :
978-1-4673-2581-3
Type :
conf
Filename :
6390571
Link To Document :
بازگشت